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Inviscid methods of treating secondary flows due to streamline curvature are 
well known in the literature. The development of secondary motions at high 
Reynolds number in a bifurcation characteristic of the lung airways or the 
cardiovascular system is considered. In  particular, the secondary motions in the 
initial section of a bifurcation, which can be considered a tube of slowIy varying 
ellipticity, are calculated. Providing viscous effects are confined to regions near 
the walls, the calculated velocity field agrees with experimental observation. 
Thus the structure of the secondary motions can be considered an effect of 
stretching of vortex lines by the tube boundary. 

1. Introduction 
The existence of secondary motions in engineering systems with internal 

fluid flow along curved streamlines is well known and has been extensively 
analysed by an inviscid theory. Methods of solving such inviscid problems were 
initiated by Squire & Winter (1951) and largely developed by Hawthorne (e.g. 
1965) and Lighthill (1956). More recently Horlock & Lakshminarayana (1973) 
and Lakshminarayana & Horlock (1973) have reviewed and further expanded 
the theory of secondary flows. Such secondary flows arise for example in bent 
tubes and in flow through turbine blades. 

These problems are tackled by assuming that the fluid is inviscid and initially 
carries vorticity normal to the direction of flow. The interaction of the flow 
with the downstream boundaries produces a deformation of the vortex lines as 
they are carried along streamlines of the flow. In  this way vorticity in the 
direction of the flow is produced. It can be seen that such an explanation of the 
generation of secondary flows assumes that it is an inviscid effect arising from 
the deformation of vortex lines. At high Reynolds numbers viscosity would act 
to modify the inviscid flow, through the introduction of boundary layers at the 
walls, but in the absence of separation it is expected to have little effect elsewhere. 
All models do assume that separation does not occur. 

The theory is based on the Cauchy-Helmholtz-Kelvin theorem that vortex 
lines move with the fluid, their strength changing with local stretching. An 
approximate method of solution proceeds as follows. We consider a basic, or 
‘primary ’, flow to transport the vorticity. After calculating the primary-flow 



622 I .  J. Xobey 

streamlines, the change in vorticity, or secondary vorticity, can be found. 
Once the vorticity is known the associated velocity field can be calculated. Had 
the primary velocity field been the exact solution for the velocity, the calculation 
of the velocity from the vorticity would have merely given the primary velocity. 
However, in the case where the primary velocity field is only an approximate 
guess, the velocity field of the secondary vorticity will result in further deformation 
of the vortex lines and hence there will be a tertiary vorticity field, which in 
principle could be calculated, together with its associated velocity field. However, 
in the case of small upstream vorticity we expect the tertiary (and higher-order) 
vorticity fields to be negligible. 

In  recent years increasing attention has been paid to secondary flows in the 
cardiovascular system and in the lung airways (Lighthill 1972). Of particular 
importance are the secondary flows which are observed in bifurcating tubes 
(Schroter & Sudlow 1969). They have the effect of keeping shear rates high on 
the flow divider and low on the outside walls. The high dissipation rate asso- 
ciated with the high wall shear on the divider implies a greater pressure drop 
than in Poiseuille flow a t  the same Reynolds number, the actual value of the 
pressure drop depending on the strength of the secondary motions (Pedley, 
Schroter & Sudlow 1973). Furthermore, in blood vessels regions of low wall 
shear rate may be particularly important in the development of atheroma (Caro, 
Pitz-Gerald & Schroter 1971). Mixing of gases and solutes in the lungs and blood 
vessels will also be affected by the strength of secondary motions. 

In  the first few branches of the lungs and in the aorta, the Reynolds numbers 
of interest are large, and so in principle we should be able to use an inviscid 
analysis followed by a boundary-layer analysis. Previous studies of viscous flows 
in curved tubes are applicable at  lower Reynolds numbers (McConalogue & 
Srivastava 1968). I n  this paper we present the solution for inviscid flow in a 
tube of slowly varying ellipticity. The relevance of this type of flow to motion 
through a bifurcation is explained below. Scherer (1972) has studied inviscid 
flow through a bifurcation by considering only the development of flow in the 
daughter tubes and neglecting the details of flow in the bifurcation itself. 

The lungs are joined to the larynx by a large tube, the trachea. This bifurcates 
into two bronchi, which join it to the lobes of the lungs. The bronchi again bifur- 
cate, in an asymmetric manner, for some twenty generations until the smallest 
tubes, the alveolar ducts, give rise to the alveoli, where gas exchange takes place. 
The Reynolds number during fairly heavy breathing varies from around lo4 
in the trachea to in the alveoli. In  the arterial network there is a similarly 
vast range of Reynolds numbers, between the aorta and the finest capillaries. 
This analysis is therefore expected to apply only to the larger airways and blood 
vessels, although in the largest of all the assumption of laminar flow is question- 
able. 

In  mammals, the flows encountered are usually pulsatile. Suppose that m 
is a typical frequency of the pulsations of the heart or lung. Let U be a velocity 
scale and I ,  an axial length scale of the region we are interested in. Then quasi- 
steady flow will exist if 

al, /D < 1. (1) 
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In  the larger airways the flow can be considered quasi-steady. This is also true 
in the smaller arteries, but in the largest artery, the aorta, because the heart rate 
is higher than the breathing rate, the flow cannot be considered quasi-steady. 
The analysis presented here will be a steady-flow analysis and hence will be 
relevant only to those flows in the lungs and cardiovascular system which can be 
considered quasi-steady. 

Two different types of secondary flow are encountered. In  bent tubes the 
secondary flow which occurs is associated with the turning of the direction of 
motion of the stream. In channels of constant cross-section, fluid flowing around 
a bend has generated in itself axial vorticity which is approximately twice the 
bend angle times the upstream vorticity normal to the plane of the bend (Squire 
& Winter 19.51). However secondary flows also arise in situations where the 
mean direction of flow does not change but the tube changes in cross-section in 
a non-axisymmetric manner. In  situations where both types of secondary flow 
occur it is not clear how the two types interact. In  the bifurcating tubes en- 
countered in the lungs and cardiovascular system, for example, the parent tube 
changes in cross-section before it bifurcates. Stehbens (1974) gives details of 
this change in cross-sectional area for the iliac bifurcation in rabbits, and con- 
cludes that study of flow in such regions is necessary for the understanding of the 
subsequent flow development, and in particular for predicting separation at 
bifurcations. This study agrees with that conclusion. 

Mathematically the problem of flow through a bifurcation appears to be 
intractable a t  present. However, a first step in studying such flows is to consider 
flow through an idealized symmetric bifurcation, Consider a semi-infinite smooth 
circular cylinder whose cross-sectional shape changes, becoming elliptical. The 
elliptical cross-section then becomes dumbell shaped and finally two daughter 
tubes emerge. The branch angle is defined as half the angle between the two 
daughter tubes. Such a bifurcation is shown in figure 1. Probably the simplest 
way to tackle flow through such a bifurcation is to divide the flow into the 
following regions. 

(a)  Region 1-2: a cylinder of slowly varying ellipticity. 
(b) Region 2-3: occurrence of flow division. 
( c )  Region 3-4: entry flow into daughter tubes. 
It is not known how important each of these regions is in the development of 

secondary flows. The model of Scherer (1972) was applied to flow in the daughter 
tubes on the assumption that the vorticity a t  the entrance was known and did 
not subsequently vary with distance. Thus the axial velocity profile far down- 
stream could be calculated. However, he neglected the secondary motion which 
could have developed in the region 1-2 and thus a region of great interest is 
region 3-4, where the axial vorticity is strongly dependent on axial distance. 
In  studying region 1-2 we consider a tube of slowly varying ellipticity as the 
potential velocity can be easily calculated for such a geometry, and the velocity 
field simply obtained from the vorticity field. 

Potential flow has been considered by Olsen (1971), who derived the first 
two terms of an expansion for the potential in terms of a parameter representing 
the slowly varying nature of the tube. Olsen also calculated the Stokes flow in 
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FIQTJRE 1 Idealized symmetric bifurcation, showing points of onset of changes in geo- 
metry. (1) Circular cylinder becomes elliptical. (2) Elliptical cylinder becomes dumbell 
shaped. (3) Daughter tubes emerge. (4) Daughter tubes become straight circular cylinders. 

such a tube and made experimental measurements of such flows. The experi- 
ments were performed at several Reynolds numbers, varying from 330 to 2164 
(based on the diameter of and average velocity in the parent tube), and for flat 
and parabolic entrance velocities. As would be expected at these Reynolds 
numbers, the observations did not agree with the Stokes-flow calculations. 
Furthermore, the potential-flow analysis was unable to bring out the essential 
secondary-flow features which were evident in the experimental data. That 
potential-flow analysis is, however, used in the present paper (see $2) to provide 
a first approximation on the basis of which the subsequent study of the secondary- 
flow effects can proceed. I n  Q 4 a comparison is made between the experimental 
observations of Olsen and our secondary-flow calculations. In  addition the 
nature of the flow is calculated for other cases involving changes in the area of 
the tube. 

2. Preliminaries 

and present the solution for potential flow (Olsen 1971). 

and let the boundary of the tube be 

Here we describe the problem more fully, introduce a non-dimensionalization 

Let (8,9, 2) be rectangular Cartesian co-ordinates with 4 in the axial direction, 

$"la2 + 2 2 p  = 1, (2) 

where = &(a), & = &(4) and &+a, and &+ao as 2+ -a. Thus t2 and & are 
respectively the semimajor and semiminor axes of the elliptic cross-section at 
station x. Assume that the functions a and b vary slowly with 8. Let t" be the 
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FIGURE 2. Geometry of slowly varying elliptic cylinder. 

time and CL = (a,O,a) be the velocity. Take 1, to be an axial length scale, 0 to 
be a velocity scale and choose a time scale lo/O. 

(3) e = a,/Zo < 1, 
Define 

and non-dimensionalize according to the following scheme: 

x = $/ lo ,  y = g/ao7 z = 

u = D-10, 

a = +,, b = 6/ao, t = fU/lo.  

The vorticity scale is c/ao. The boundary of the tube is then 

(4) 

y2/a2 + z2/b2 = I. (5 )  

Let S = ab be the non-dimensional cross-sectional area; far upstream the 
dimensional area is na;, downstream it is nags. The tube geometry is shown in 
figure 2. 

Equations (3) and (4) suggest that the equation for the non-dimensional 
Laplacian operator should be 

with an approximate form 
v; = a 2 l a y 2  + a21aZ2, 

namely the two-dimensional Laplacian in the cross-plane. Let q5 be the pertur- 
bation potential, so that the velocity is 

u = S-li+V$, ( 8 )  

where i is a unit vector in the 2 direction and 

The continuity equation is 
v 2 q 5  = -sas-l/ax 

40 
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and on the boundary of the tube 
n.u = 0, 

where n is a unit vector normal to the boundary. The boundary condition far 
upstream is q5 -+ 0 as x -+ - 00. The potential is found by supposing that # can be 
represented as 

(12) 

This perturbation procedure produces a series of Neumann problems in the 
cross-planes x = constant and thus an arbitrary function of x appears at  each 
step. This function must be chosen such that the axial velocity satisfies the flux 
condition, namely that the volume of fluid passing each station x = constant 
per unit time is a constant. Olson (1971) presented the solution for q51 but did 
not calculate the arbitrary function of x. The solution is 

9 = €41 + €3992 + O ( 8 ) .  

where a prime indicates dfdx. 
The problem we should like to solve, namely the development of an arbitrary 

flow which encounters a region in which the boundary shape changes slowly 
with axial distance, is unfortunately beyond our grasp. It is necessary to assume 
that far upstream the axial flow is only slightly sheared. Thus we shall take 
u-t 1 - Sr2 as x-+ - 00, where 6 < 1 and r2 = x2 + y2. Classical secondary-flow 
methods have been developed which deal with large shear in the oncoming 
stream but they rely on the deformation of the streamlines being small. If a 
large deformation occurs, as in the present case, the problem is tractable only if 
the upstream transverse vorticity is small. This is discussed by Hawthorne (1965). 

3. Small vorticityparge deformation solutions 
When the flow upstream has only small transverse vorticity one can obtain a 

solution for flow in a tube of slowly varying ellipticity by using classical secondary- 
flow methods. Such methods were introduced by Squire & Winter (1951) to 
analyse the flow of a slightly sheared fluid through a cascade of turbine blades. 

Knowing the potential solution, one considers the deformation of vortex lines 
which are carried by the streamlines of the potential flow. This deformation of 
the vortex lines produces a secondary flow owing to the generation of stream- 
wise vorticity. Changes in the original axial velocity profile are produced con- 
vectively. Such a method of analysis will be valid for small shear upstream and 
only for a relatively short axial distance. This is because the effect of the secon- 
dary flow is to produce further distortion of the vortex lines, generating tertiary 
vorticity, which in turn produces tertiary flow. The cumulative effect of such 
action is to cause the secondary-flow theory to become inaccurate far downstream. 

One can estimate the ‘entrance length’ of approximate validity of the secon- 
dary-flow theory. Suppose that in travelling an axial distance O(Z) a fluid particle 
is displaced transversely a distance O ( d )  by the primary flow. If the upstream 
vorticity is O(6) then one expects an additional displacement O(ESZ) in the 
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transverse direction from the secondary velocities. When the extra displacement 
is comparable with the radial dimensions one no longer expects the secondary- 
flow theory to be reliable. Using E = ao/Zo we see that the condition given is 

Z/ao = O((sS)-l), (14) 

which agrees with physical intuition, for as e or 6 becomes smaller, the entrance 
length in which the theory is valid becomes larger. 

Let the primary flow be the potential flow given in Q 2. The streamlines of the 
primary flow are calculated from 

Substituting q5 = ~ q 5 ~  + O(e3) with given by (13), the solution is 

y = ayo + 0(€2) ,  z = bz, + 0(€2), (16) 

where (yo, zo) is the origin of the streamline as x+ - CO. It can be seen that (16) 
represents the deformation of transverse circles of fluid particles into ellipses as 
the fluid flows from a circular tube into an elliptical one. 

The t-function, representing the time taken for a fluid particle to reach station 
x relative to the time it would have taken in an undeformed tube, takes the 
form 

The t-function was first defined by Lighthill (1956) and is given in (17) in the 
non-dimensional form appropriate to this paper. The secondary vorticity is 
calculated from the stretching of the vortex lines and was given by Lighthill 
(1956). If (m,, q,, 0,) are the vorticities in the ( x ,  y ,  z )  directions respectively, in 
non-dimensional form we have 

Lighthill's equations for the vorticity are 

where Uo = Uo(y,, zo) is the oncoming shear flow. Here we have 

u, = l-S(y;+z;). (20) 

Using the potential axial velocity defined by (8) in (15) we calculate the t-function 
in the form 

t = E-yt,(X) +62t,(x, yo, zo) + o ( E 4 ) t .  (21) 
40-2 
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the following scheme: 
We express the velocities as perturbation expansions in s and S according to 

(22) I u = s-I+ su, + E2#1z + 
w = s#,, + esv, + 0(€3), 

+ 0(s4), 

w = E # , ~ + E S W ~ + O ( ~ ~ ) ,  

where is the perturbation potential given by (13). There is no O(sS) term in the 
expansion for u since no term of this order appears in the expressions for the 
secondary vorticity given below, as to is a function of z alone. 

Let the actual streamlines, rather than the primary streamlines, be 

Substituting (21)-(23) into the expressions (19) for the secondary vorticity we 
obtain 

at 
0, = -2sS- yo/o'-z 3) +O(P) ,  i (  axo oayo 

wy = - 2 S a z o + 2 s ~ ( y o ~ - z  -) ar + 0 ( € 2 B ) ,  

8x0 OaYo 

In order that  the tertiary vorticity be small compared with the secondary 
vorticity, we see that the w, equation in (24) requires 

s = O ( E ) .  (26) 

At this point 7 and [are still unknown and represent the effect on the primary 
streamlines of the developing secondary flow. The method of solution is to ignore 
the O(S2) terms in w, when calculating the lowest-order perturbation (a,, w,, wJ. 
Then using wl and w, in (15) allows 7 and [ to  be calculated, and hence u2. The 
second-order axial-velocity term u, will give the redistribution of axial momen- 
tum due to the secondary motions. 

To calculate the velocities from the vorticity we use 

v2u= - v x o ,  (26) 

where o is the vorticity vector. The t-function by (S), (13) and (17) is 

where 

Define c(x) = ~~-mS2(a2Y'-baZ')dz. 
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Then the components of the vorticity (24)  become 

w, = - 2€6C(X)/52+ 0(62), 
wV = - 2Sa2z/5 + 0(a2), 
W, = 26b2y/5 + 0(a2). 

Taking the curl of the vorticity we see that the equations for the coefficients 
u,, v1 and w, in (22)  are 

(29 )  1 Vfu, = - 2S(a-2+b-2), 

Vf w, = 2( Y - 2) a% - 2cz/S2. 
Vf V, = - 2( Y - 2) b2y + 2cy/S2, 

The last terms in the equations for v1 and w, in (29)  represent trailing vorticity 
in the sense that should the wall slope become zero, so that the circular cylinder 
has become an elliptic cylinder, there would be axial vorticity downstream 
given by these terms. The other terms in (29)  are transient since they contribute 
to the secondary vortjcity only whilst the tube is actually changing in cross- 
section. The boundary conditions are that upstream the secondary motions 
vanish and a consistent expansion in E and 6 of the inviscid boundary mndition 
that there be no velocity normal to the wall. Hence, if the surface is 

The continuity equation is represented by the flux condition mentioned earlier. 
The velocity field given by (29)  is found in two parts. First the velocity field 

(0,v2, w2) due to the 'trailing vorticity' is found using a stream function which 
vanishes on the boundary, hence automatically satisfying the condition that 
there be no velocity component normal to the wall. The second part, the velocity 
(ul, v2, w3) due to transient terms, requires the introduction of further potential 
solutions. 

The solution of V2,v2 = 2cy/S2, V:w2 = -2cz/S2 ( 3 1 )  

v2 = $-m wz = -$-V, (32)  

which satisfies the boundary conditions is 

where 

I The solution of Vfu, = -2S(a-2+b-2), 

Vfw, = 2 ( Y - Z ) a 2 z  
Vfv, = - 2 ( Y - Z ) b Z y ,  

which satisfies the boundary conditions is 

I uI = {P - S(y2/a2 + z2/b2)}, 

w3 = &z{ ( Y - 2) a2z2 + YS2 + 2252 - 352P),  
03 = - +y{( Y - 2) b2y2 -I- 2 YX2 + 25'- 3XYP}, 

(33) 

(34 

(35)  

where .F = (52 - 1)/25.  
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Thus we have evaluated all the terms in (22)  except B2u2, which is due to 
convection of transverse vorticity by the secondary-flow streamlines. Thus it is 
necessary to return to (16) and evaluate the O(6) term represented in (23)  by 
7 and Q The O(6) change in the streamlines will lead to an O(S2) term in the 
transverse vorticity and hence an 0(d2) term in the transverse velocities. We 
intend to calculate only the 0(a2) term in the axial velocity. 

If the secondary velocities are known the perturbation to the primary stream- 
lines can be calculated. We have, using ( 2 2 )  in (lq, 

I a y p x  = S& + 6S(v, - S$,,Ul) + 0 ( e 2 ) ,  

azpx = A!?& + 6S(W1 - Sq5,,U1) + O(E2). 

The transverse velocities v1 and w1 calculated above are simply v1 = v2 + v3 and 
w1 = wg + wg. Solving (36)  we evaluate 7 and 5 as 

(38a)  
a,@) = s" ( 2  YS3 + ZS3 + r2) c s  ax, where 

--co a +b 

a2(x) = 3 s z  (YS'+---,) CS ax, 
- m  a2+b  

) ax. ( 3 8 4  
P2(X) = (YS3+22S3--  c s  

a2 -I- b2 

Thus the transverse secondary vorticity is 

wy = - 26a2z/S -- 2F {(a2-p2) (i)3+(~2-a1)($) 

w, = 26b2y/S+~{(P1-a,) 3 ($3+(a1-P2)(9) .  
(39)  

(40) 
c s  

Define y(x) = 2 S z  ( YS3-2f13+- 
- m  

Consider which velocity terms can give rise to 0(a2) transverse vorticity. Clearly 
any transverse-vorticity terms would be O(S2/e),  however since these are absent 
we deduce that the 0(d2) transverse vorticity is associated entirely with an 
0(a2) axial-velocity term. Hence we calculate 

The addition of u2 to the axial velocity does not affect the flux of fluid passing 
any station and hence there is no non-zero function of x to be added to u2. 
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(0) VJ) (4 
FIGUFLE 3. Initial axial velocity profile. (a) Contours of constant axial velocity at 0.5(0.1)1. 

( b )  Velocity profile on semimajor axis (c) Velocity profile on semiminor axis. 

4. Examples : comparison with experiment 
Olsen (1971) observed flow through a tube of varying ellipticity at Reynolds 

numbers based on tube diameter and average velocity between 330 and 2164. 
The tube was constructed such that the radius of curvature of y = U(X) was 6 ;  
thus for x > 0, y = a(x)  was the arc of a circle centre (0,6) and radius 5 units, 
and a(x) = 1 for x < 0. The tube was of constant cross-sectional area thus 
b(x) = I/a(x). Calculations of the velocity field have been made for this geometry 
and are shown in figures 3-6. These calculations were made for E = 0.5 and 
6 = 0.5. The value of E is that used by Olsen and 6 was chosen as 0.5 so that (i) 
secondary flows would develop reasonably quickly with axial distance, (ii) near 
the centre of the tube the inlet velocity profile would model Poiseuille-flow inlet 
conditions and (iii) the terms neglected in the s,6 expansion of the velocity 
field would still be approximately an order of magnitude smaller than those 
calculated. In  figure 3 the initial axial velocity profile is shown, contours of 
axial velocity being drawn at u = 0-5(0-1)1. Figure 4 shows the secondary 
velocities at x = 1 together with the axial velocities on the semimajor and semi- 
minor axes and the contours of axial velocity. Figure 5 shows the same quantities 
for x = 2 and figure 6 shows the axial velocity at x = 2.5. It can be seen that the 
development of the axial velocity profile proceeds as follows. The circular rings 
of fluid travelling with the same axial velocity are initially deformed into ellipses 
as the fluid first enters the elliptic region, however, further downstream, the 
secondary velocities cause fluid to move in the opposite direction to the primary 
transverse flow, distorting the elliptical rings of fluid into the shapes shown in 
figures 5 and 6. The primary and secondary streamlines are shown schematically 
in figure 7, together with the decomposition of the transverse velocities into a 
primary and a secondary field. 

These calculations are compared with the observations of Olsen in figures 8 
and 9. In  figure 8 the secondary velocities measured by Olsen are compared with 
the calculated ones for unit flux through the tube, in which the primary axial 
velocity far upstream is u = +( 1 - 6r2). It can be seen that, ignoring the boundary 
layer, the explanation of the composition of the transverse velocities is qualita- 
tively correct. Further, the theory gives quantitatively correct magnitudes for 
the transverse velocities. 
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FIQTJRE 4. Velocity field at 2 = 1. (a) Transverse motions in direction of semimajor axis- 
(b )  Transverse motions in direction of semiminor axis. (c )  Contours of constant axial 
velocity at 0.6(0.1)1. (d)  Velocity profde on semimajor axis. (e) Velocity profile on semi- 
minor axis. Non-dimensional velocity scales shown. 

The transverse velocities for flat inlet flow are larger than those for parabolic 
flow. This has two causes: first, the local velocity near the wall is larger for the 
case of a flat inlet velocity and hence the potential contribution to the transverse 
velocities is large, and second, the boundary layer which deveIops is a region of 
large vorticity and hence locally the deformation of the vortex lines leads to 
large axial vorticity. 

In figure 9 the axial velocity profiles measured by Olsen a t  x = 1.626 and 
x = 2.376; are compared with the theoretical curves. In the core, away from the 
boundary layer at the wall, the curves are qualitatively correct. In particular 
the velocity profile in the direction of the semiminor axis becomes ‘plug’ shaped 
whilst the profile in the direction of the semimajor axis develops an inflexion 
point. Both of these phenomena are observed experimentally. However, the 
region in which the inflexion point is calculated to occur is some distance down- 
stream, where the theory may be of doubtful accuracy and where the distur- 
bance boundary layer may be quite thick. Thus a boundary-layer theory is 
necessary to complete the model of flow in a slowly varying elliptic tube. 
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FIQDRE 6. Velocity field a t  2 = 2. (a) Transverse motions in direction of semimajor axis. 
(b)  Transverse motions in direction of semiminor axis. (c )  Contours of constant axial 
velocity a t  0.5(0.1)1. (d)  Velocity profile on semimajor axis. (e) Velocity profile on semi- 
minor axis. 

(0) (b )  

FIQURE 6 Axial velocity field a t  2 = 2-6. (a)  Contours of constant axial velocity a t  
0.6(0.1)1. (b )  Velocityprofile on semimajor axis. (0) Velocity profile on semiminor axis. 
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FIGURE 7. Schematic structure of secondary motions in a slowly varying elliptic cylinder. 
(a) Streamlines due t o  transverse motion projected onto one plane: - , potential- 
flow streamlines; - - - - -, secondary-vorticity streamlines. (b )  Structure of secondary 
velocities in direction of semimajor axis: - , potential velocity; -----, secondary- 
vorticity velocity. 

7 
I 

FIGURE 8. Comparison of theoretical transverse velocities calculated for e = 4, 6 = 4 
with velocities measured by Olsen (1971). - , theoretical ; -.---, flat inlet axial 
velocity ; -..-I.-. .- , parabolic inlet axial velocity. Measurements made at x = 1.626. 

Calculations for cases of increasing and decreasing area show that there are 
two factors which influence the flow development. First, the changing ellipticity 
induces secondary transverse velocities and these lead to a redistribution of axial 
momentum giving the profiles which are described above. However, changes in 
area cause a general stretching (or compression) of vortex lines in the transverse 
direction and this causes a strengthening (or weakening) of the transverse 
vorticity without the development of strong secondary motions. Figure 10 shows 
the development of the axial velocity profile for a case of increasing area whilst 
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FIGURE 9. Comparison of theoretical axial velocity profiles calculated for B = 9, 6 = 4 
with velocities measured by Olsen (1971). (a) ,  (b )  z = 1.66. (c), (d )  m = 2.376. A ,  para- 
bolic axial entrance velocity prof&; B, flat axial entrance velocity profile; C, theoretical 
axid velocity profiles. 

figure 11 shows the effect of decreasing the rate of change of the ellipticity but 
keeping the rate of area increase the same. It can be seen that the secondary flows 
must be much more developed in the case of figure 10 than in the case of figure 11. 
Figure 12 shows the effect of decreasing the area: the transverse vorticity de- 
creases and the axial velocity profiles become plug like. 

5. Conclusion 
We have used inviscid secondary-flow methods to study the development of 

flow in a tube which resembles the initial part of a bifurcating tube. Providing 
the secondary-flow problem can be made tractable, the resulting solutions are 
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FIGURE 10. Axial velocity field for case of increasing area b = a-*, where a is taken from 
Olsen's model. From left to right: contours of constant axial velocity, velocity profile on 
semimajor axis end velocity profile on semiminor axis. (a) 5 = 0. (b)  5 = 1. (c) x = 2. 
(a) 2 = 2.6. 

sufficiently simple to be used in further work. Such velocity fields could, for 
instance, be used to study the deposition due to impaction on the tube walls 
of particles carried by the fluid. Further work to develop a complementary 
boundary-layer theory is being carried out. 

In flow through a slowly varying elliptic tube the deformation of the vortex 



Secondary motions in a tube of slowly vcwyirag ellipticity 637 

FIGURE 11. Axial velocity field for case of increasing area b = 1, area = a+, where a is 
taken from Olsen’s model. From right to left: contours of constmt axial velocity, velocity 
profile on semimajor axis and velocity prof% on semiminor axis. (a) a = 0. (b )  a = 1. 
(0) 2 = 2. (d )  2 = 2.5. 
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FIUURE 12. Axial velocity field for case of decreasing area b = a--2, where a is taken from 
Olsen’s model. From right to left : contours of constant axial velocity, velocity profile on 
semimajor axis and velocity profile on semiminor axis. (a)  z = 0. ( b )  z = 1. (c) z = 2 .  
(d )  z = 2.6. 

lines results in transverse velocities which have a characteristic profile, that of 
circulatory flow in each quadrant of the elliptical cross-section, superposed on 
the potential flow. Further, the axial velocity profile is distorted, the profile on 
the semiminor axis becoming plug like, whilst the profile on the semimajor axis 
develops an inflexion point owing to the transfer of axial momentum by the 
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transverse motions of the fluid. Comparison with experimental results confirms 
this picture of the structure of the velocity field. 

Thus in considering flow in a bifurcation one has to take the above picture into 
account. Hence secondary flows in the daughter tubes could be expected to 
develop more quickly than secondary flows in a curved tube. Further, in the 
lungs, on expiration, the secondary motions generated as the fluid moves through 
the daughter tubes into the mother tube would be strengthened in the region of 
changing tube geometry. Near the ends of the semimajor axis it is apparent that 
a deceleration of the fluid occurs and a point of inflexion develops in the axial 
velocity profile. This would lead one to believe that flow could separate in this 
region, however, further work on developing a boundary-layer theory is necessary 
before anything further can be said. Also, one would expect that the development 
of an inflexion point in the axial velocity profile would tend to destabilize the 
flow. This is in contrast to  the situation in a bent pipe, where the flow is more 
stable than in a straight pipe (Taylor 1929). Experimental evidence confirms 
the view that flow through a bifurcation is less stable than flow through a straight 
tube of equivalent calibre (Stehbens 1959; Dekker 1961; West & Hugh-Jones 
1959). 
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